Knowledge-enabled Question Answering with BERT

Chao Cheng, Annie Feng, Jackson Zhang

Abstract

Knowledge-enabled language representation models
are models that are first pre-trained on a large-scale
dataset, such as BERT, and then fine-tuned on in-
puts in the form of knowledge-augmented sentence
trees (this is the approach in a paper titled K-BERT).
By injecting knowledge from a knowledge graph
into a training dataset during the fine-tuning phase,
the model is able to achieve better performance on
several domain-specific tasks, such as Question An-
swering. In this paper, we introduce a knowledge-
enabled model (BERT + ConceptNet5) for the task
of English-language Question Answering, adopt-
ing the approach used by K-BERT for Chinese lan-
guage tasks. In addition, we investigate several opti-
mizations, including knowledge pre-processing and
knowledge sampling, which offer increased accuracy
and performance over the baseline model.

1 Introduction

Question Answering is the task of providing a suit-
able answer from within a corpus or set of possible
answers when given a natural language query. Re-
cently, large-scale open-domain models that are
pre-trained on Wikipedia and other general cor-
pora, such as Google’s BERT,' have achieved re-
markable results on tasks such as Question Answer-
ing, Review Classification, and many others. How-
ever, while open-domain QA models perform well
on general QA, they are unable to understand the
highly-specialized and unique language found in
the closed-domain question-answering task, where
questions are restricted to a specific domain such
as law or medicine. For instance, BERT achieves
suboptimal results during inference on the elec-
tronic medical records (EMR) classification and
prediction tasks.?

Originating from Tim Berners-Lee’s version of
a machine-processable web of data, knowledge
graphs represent rich, flexible, and uniform data
that may solve the challenge of closed-domain
QA by embedding domain-specific knowledge into
traditional language models.> In a knowledge
graph, knowledge is encoded as a collection of
triples in (object_1,relation, object_2) format,

e.g. (France, is_a, country). By lever-
aging the ontologies within knowledge graphs, lan-
guage models such as BERT can learn domain-
specific knowledge during the fine-tuning phase,
which will lead to a higher level of sophistication
across a wide range of tasks within closed-domain
areas. To this end, natural language inputs are aug-
mented with knowledge from the knowledge graph
in the form of triples to create sentence trees be-
fore being fed in during the training phase, thus
"injecting" knowledge into the language model.

In 2019, researchers from Peking University and
Baidu Research published K-BERT,? a knowledge-
enabled version of BERT-Chinese that achieved
state-of-the-art results on twelve different NLP
tasks on Chinese language datasets. In this pa-
per, we employ the same methodologies to train
an English version of K-BERT for the question-
answering task, including several improvements
to account for linguistic differences and variance
in the datasets. We also propose some optimiza-
tions specific to the question-answering task. After
knowledge injection, our model is able to slightly
outperform non-knowledge-enabled BERT, indicat-
ing that knowledge augmentation is a valid strategy
with the potential to achieve even greater results
through further investigation and optimization.

2 Motivation and Problem Statement

Pre-training a large language model such as BERT
is computationally expensive and inefficient, re-
quiring vast amounts of resources and time. It is
also not clear how large scale data from many parts
of the web can lead to good models for domain-
specific tasks. In this paper, we explore the usage of
knowledge graphs as an efficient approach to fine-
tuning the model for domain-specific tasks, and as
a way to emphasize correlations between domain-
specific words to try to get better performance on
an English question-answering task.



3 Related Works

In their paper, K-BERT introduced several novel
techniques for dealing with problems that com-
monly arise during the knowledge injection and
training process. Primarily, the issue of knowl-
edge noise is where too much knowledge embed-
ded into input sentences can obfuscate information
and alter the semantic meaning of the original sen-
tence. After knowledge injection, if the sentence
is embedded with too many knowledge triples, an
abundance of irrelevant knowledge tokens may oc-
cur. Although masked language models cannot
currently be used as reliable knowledge bases,* a
mask layer can help control which tokens are visi-
ble to each other as a way to encode knowledge in a
language model. This method is used by K-BERT,
where a seeing layer controls token visibility when
injecting knowledge from a knowledge graph into
input sentences, so that the meaning of the original
input sentences is unchanged.

Another issue is heterogenous embedding space,
in which inputs to BERT span a particular vec-
tor space, whereas knowledge-embedded sentence
trees span a different vector space that depends on
the implementation (for instance, a tree data struc-
ture). To combat this issue, K-BERT transforms
inputs during the knowledge injection process into
a format matching BERT’s embeddings (more de-
tails can be found in Section 5.1).

4 Dataset

We train and evaluate our accuracy on the AI2 Rea-
soning Challenge 2018,° which has 7,787 genuine
grade-school level, multiple-choice science ques-
tions. For each question, there are 3 or 4 choices,
one of which is correct. In our dataset, we in-
cluded a question-answer pair and labeled O for
each wrong answer, and a question-answer pair and
label 1 for each correct answer. Also, we evaluate
on the "Easy" instead of "Challenge" datasets.

4.1 Comparison to K-BERT

For comparison to K-BERT (Chinese), we used
the NLPCC-DBQA dataset for training and eval-
uation. The NLPCC-DBQA dataset has question-
answer pairs labeled O or 1, with each question
having one best answer (that question-answer pair
is labeled 1), and many other suboptimal answers
(those question-answer pairs are labeled 0).

5 Knowledge Graph

For our English model, we employed ConceptNet,
an open, multi-lingual knowledge graph. In this
paper, we use a refined subset of ConceptNet® as
our knowledge graph. We excluded triples includ-
ing words that are not in the English alphabet or
digits 0-9. After this processing, we were left with
approximately 3 million out of 34 million triples.
We parsed the first 1 million out of these remaining
3 million triples to use. Ideally, we would parse
all of the English triples, and create a knowledge
graph from these, but practically the parsing was
difficult since the triples were encoded in multiple
formats from past versions of ConceptNet.

5.1 Comparison to K-BERT

For comparison to K-BERT (Chinese), we used the
CNDBpedia knowledge graph in fine-tuning and
inference. The authors of K-BERT have selected
a refined subset of CNDBpedia for performance
on the dataset, and we are using their provided
knowledge graph to evaluate our Chinese baseline
model.

6 Models and Methodology

We have two baseline models: one for Chinese,
and one for English datasets. The Chinese baseline
that we will use for comparison is the fine-tuning
model implemented by the authors of the K-BERT
paper. In their paper, they evaluated their model on
classification and named-entity recognition tasks,
with several datasets and knowledge graphs. In this
paper, we will implement a similar architecture for
an English model for the classification task on a
question-answering dataset and knowledge graph.
Our knowledge graph refinement and dataset selec-
tion are similar to the K-BERT paper’s choice of
the NLPCC-DBQA dataset and CNDBpedia knowl-
edge graph.

6.1 Knowledge injection and fine-tuning

A question-answer pair sentence in our dataset is
encoded as:

"[CLS] " + question + "[SEP] " + answer +
"[SEP]"

Our approach to knowledge injection closely
follows K-BERT’s implementation, summarized
as follows. During the knowledge injection pro-
cess, we augment the original sentence by first
converting it into a linked list of tokens, and then



searching each token in a look-up table contain-
ing all triples from the knowlege graph. For each
token, if any triples containing the token as the
primary object are found, then the corresponding
(relation, object_2) branch is appended to the sen-
tence tree at that token. Because certain tokens
potentially may have many triples, we limit the
maximum number of augmentations per token to
two triples. This operation is not performed recur-
sively on any branches, so the maximum depth of
any augmented nodes is 2. Additionally, for each
augmented token, we mark it as invisible to all other
tokens in the original sentence besides its parent,
and store this information in a k x k visible matrix,
where £ is the size of the sentence tree. Lastly, after
knowledge injection, we are left with the following
inputs (including the embeddings used by BERT):

1. knowledge-injected sentence tree

2. visible matrix

3. position embeddings (same as BERT)
4. segment embeddings (same as BERT)

Note that the base BERT model uses only three
embedding vectors as input: token embeddings,
position embeddings, and segment embeddings. To
remedy this, K-BERT implemented a seeing layer
which dynamically computes token embeddings
based on the visible matrix for each token during
the fine-tuning phase.

There are several differences between our knowl-
edge injection and the K-BERT knowledge injec-
tion. In our implementation, we modified the above
procedure to obtain the correct visible matrix, po-
sition, and segment embeddings for English input
sentences. Most noticeably, since K-BERT con-
siders tokens to be characters in Chinese, whereas
English characters are letters, we refactored the
seeing layer module to instead parse tokens by
word. Moreover, during the token segmentation
process, we segmented sentences into individual
words. However, in the knowledge injection ap-
proach employed by K-BERT, knowledge was em-
bedded on entities consisting of up to multiple
words using the pkuseq package.” Ideally, we
would be able to segment based on semantic mean-
ing, such as "black leaf beetle" being parsed into
one token. Instead, we currently segment this
phrase into the tokens "black", "leaf", and "bee-
tle", so that each becomes a separate entity rather

than a single black leaf beetle entity. Unfortunately,
we did not find a suitable English segmentation
package that could be easily adapted for this pur-
pose. As a result, the knowledge triples that are
injected may not be as relevant, which in turn may
affect our results. Additionally, linguistic differ-
ences affected our implementation. Chinese nouns
are composed of characters, each of which can be
standalone words. However, English nouns can
be words, which are composed of letters, and are
not standalone words. Because of this difference,
we must count the token and indices differently, or
else we’d be counting letters instead of standalone
words.

6.2 Iteration on dataset

We combined the "Easy" and "Challenge" sets for
each of train, dev and test sets. where all incorrect
choices are rated 0, and correct choices are rated 1
to turn this into a binary classification task.

We also varied the number of negative and posi-
tive examples in train, dev, and test sets so that our
model won’t learn to just always predict O (which
achieves about 75% accuracy since most questions
have 3 wrong and 1 correct answer). Our process
for this was:

For each question, we include the correct answer.
For a question with n incorrect answer choices,
with probability % we decide to choose 7 incorrect
answers for i € {1...n}. Then, out of these n in-
correct answer choices, we pick ¢ answer choices
without replacement considering all of the n incor-
rect answer choices equally.

6.3 Iteration on knowledge graph

We excluded triples that included any profanity.
Then, we removed triples with irrelevant relations
to the AI2 ARC dataset, which contains grade-
school science questions. Finally, we parsed the
first 1 million out of these remaining 3 million
triples to use in our knowledge graph.

These removed relations were "antonym", "ca-
pable of", "external url", "distinct from", and "de-
sires". After inspecting the triples that included
these relations, we qualitatively reasoned that the
triples that contained these relations introduced
harmful noise into the model. From the K-BERT
paper, this is mentioned as the "knowledge-noise"
issue.

For example, we removed these triples that had
"desires" as the relation:



argl rel arg2
420288 person desires crispy potato chip
420289 person desires critical thinking
420290 person desires cry at times
420291 person desires create beautiful things
420292 person desires control over or destiny

Our hypothesis was that they didn’t contribute
to correlations we wanted to create for question-
answer pairs drawn from grade-school science ex-
ams.

7 Results

7.1 Baseline
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Figure 1: Snippet of NLPCC-DPQA

In their original paper, the authors trained K-
BERT on NLPCC-DBQA, using the CNDBpedia
knowledge graph. The paper reported an MRR
(mean reciprocal rank) score of 94.2 on the test set,
and we also independently ran an evaluation of the
model on a test dataset, producing the results below
(the overall accuracy was 98.16%).

Upon inspection of the NLPCC-DBQA dataset

Category | Precision | Recall | F1
Correct | 0.791 0.859 | 0.824
Incorrect | 0.993 0.988 | 0.990

Table 1: Results of original K-BERT on Chinese QA

used in the original K-BERT paper, we observed
that the number of negative examples vastly out-
numbered the number of positive examples. As
seen in figure 1, with just 20 examples the ratio of
positive to negative examples is 1 : 10. In other
sections of the dataset, the number of positive ex-
amples is even more sparse. This imbalance may
explain the high precision, recall, and f1 score on
the classification task achieved in the original pa-
per. Because the NLPCC-DBQA dataset used for
training and inference is so skewed toward nega-
tive examples, the model may simply be learning
the counts of the labels rather than the contents of
the sentences and thus predict negative labels with
higher probability during inference.

During our initial training and testing, we used
the AI2 ARC dataset where each question has one
positively labeled example and four negatively la-
beled examples. Since this dataset this biased to-
wards negative examples, we sought to remedy this
issue by creating a more balanced dataset using
sampling (see Section 5.2).

7.2 English K-BERT

To evaluate our model, we first measured the base-
line performance of BERT without knowledge in-
jection on our dataset. Then, we trained an initial
version of K-BERT that utilizes only the knowledge
injection module without using a visible matrix.
Lastly, we trained a final version of K-BERT, im-
plementing the improvements mentioned in Section
5 as well as including a refactored visible matrix.
Each of the models was evaluated on a test dataset
consisting of 14,188 samples, and the accuracies
are shown below.

Model Configuration Accuracy
BERT without knowledge 74.94%
K-BERT, no optimization 75.04%
K-BERT, with optimization 75.68%

Table 2: Comparison of Results (English QA)

The figure below shows the decrease in training
loss over time.
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Figure 2: Average Training Loss of English K-BERT

8 Conclusion
In our project, we learned several things:

1. Modeling differences between languages (Chi-
nese vs. English)

2. Effect of data augmentation (by knowledge-
injection)

3. Problems with binary classification to prove
the effectiveness of a method

For 1, in the knowledge injection step, we re-
alized that the linguistic and computational differ-
ence between Chinese characters vs. English let-
ters could be a modeling issue. The discrete unit of
meaning in Chinese is a single character, whereas
the smallest unit in English is the word. The Chi-
nese character cannot be broken down further (in
handwriting, you can argue strokes, but Chinese
character codes for computers don’t do this). How-
ever, in English, ASCII has the letter as the smallest
unit of the language. The representation that our
model learns is limited by our initial encoding of
the language (ASCII or Chinese character code),
so the actual model will have to change when using
the Chinese implementation as a starting point, but
it’s not clear what exactly needs to change. For the
project, we did a simple approximation by making
each individual Chinese character equivalent to the
English word, but this is not always true, as several
Chinese characters can map to just one English
word.

For 2, we can characterize our project approach
essentially as data augmentation. For question an-
swering, we don’t really care about understand-
ing grammatical structure. Instead, the relation-
ships between concepts are more important (the

understanding is decoupled from the expression of
the understanding). So, a knowledge graph seems
like a good choice for data augmentation, since
it tries to concisely capture the relationships be-
tween concepts by the format of (subject, predi-
cate, object). By augmenting sentences with triples
from the knowledge graph, we attempted to em-
phasize the correlation between related concepts
for question-answering. However, further analy-
sis would be required to see if a higher correlation
was learned due to knowledge injection. For ex-
ample, we would like to inspect how the injected
knowledge changes the attention compared to the
attention over the original sentence.

For 3, we realized that binary classification was
not a good way to evaluate question-answering.

While investigating the KBERT model and im-
plementing modifications for our research goals,
we observed an undesirable modeling choice in the
original paper, which was the binary classification
task as a metric for analyzing model performance.
In the paper, the model is performing binary classi-
fication to learn *good’ responses to questions. As
discussed in our results, in replicating the results of
the KBERT paper using an English KG and data,
we observed that our model accuracy was highly
dependent on the ratio of positive and negative la-
bels of question-answer pairs during training and
inference. In particular, if the number of negative
responses is drastically larger than the number of
positive responses, then the model can achieve very
high accuracy during inference by simply only out-
putting negative classification. While inspecting
the datasets used in the original paper, we did no-
tice that the number of negatively labeled examples
was much larger than that of positively labeled ex-
amples, which may have contributed to the high ac-
curacy and precision scores in the paper. In general,
due to the high complexity of sentences, a binary
classification model is unlikely to truly learn the
semantic meaning of sentences other than general
correlation. Suggested further work could be doing
multi-class classification over answer choices.

8.1 Impact

The main motivation of the research is to explore
how we can improve the robustness of current NLP
models. Along these lines, we chose to augment the
question-answering task with a knowledge graph to
try to learn the understanding of concepts through
natural language. We also analyzed the pitfalls of



K-BERT, such as their choice of binary classifica-
tion for evaluating question-answering tasks.

This research explores an alternative to large lan-
guage models trained on domain-specific corpora
without sacrificing the advantages of learning from
domain-specific corpora. Existing large pre-trained
models use text from the web as training data
and lack domain-specific information for question-
answering tasks on specific datasets. Moreover,
pre-training models for domain-specific tasks re-
quire many examples for that model to learn spe-
cific relationships. Because knowledge graphs
structure information and relationships between
pieces of information in a concise format, we can
directly enrich information via knowledge injection.
As such, our approach avoids costly and indirect
domain-specific pre-training and instead fine-tunes
inputs by embedding domain-relevant triples tai-
lored to specific datasets to improve performance
on the question-answering task.

9 Further Work and Improvements

Instead of classification, we would like to measure
K-BERT’s performance in the text generation task
and analyze perplexity scores in order to better
evaluate the model.

In our experiments, we used ConceptNet5 for
knowledge injection on the AI2 ARC, a grade
school science multiple-choice QA dataset. How-
ever, ConceptNet is not a domain-specific knowl-
edge graph for AI2 ARC and may not be as likely to
add useful information as would a domain-specific
one. For future research, we would like to use pars-
ing APIs like Stanza to create tailored knowledge
graphs for specific datasets. For instance, we can
create a domain-specific knowledge graph for the
AI2 ARC by parsing science textbooks by convert-
ing each sentence to an SPO triple.

Lastly, during our token segmentation process,
we only segmented sentences into words. In the
future, we hope to use the approach employed by
the original K-BERT paper and create token enti-
ties, consisting of multiple words in order to better
capture the semantic meaning of sentences.
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